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Abstract

Given measurements ml, 7TLZ,.  . . . nz~ representing radar cross-sections of a given resolution
element at different polarizations and/or different frequency bands, we consider the problem
of making an “optimal’ ) estimate of the actual dielectric constant c and the r,m.s.  surface
height h that gave rise to the particular {ntj ) observed. TO obtain such an algorithm, we
start with a data catalogue  consisting of careful measurements of the soil parameters c and
h, and the corresponding remote sensing data {mj }. We also assume that we have used this
data to write down, for each j, an average formula which associates an approximate value of
mj to a given pair (E, h). Instead of deterministica]]y  inverting these average formulas, we
propose to use the data catalogue  more fully and quantify the spread of the measurements
about the average formula, then incorporate this information into the inversion algorithm.
q’his paper describes how we accomplish this using a Elayesian  approach. In fact, our method
allows us to

1)

2)

3)

4)

make an optimal estimate of E and h

place a quantitatively honest error bar oil each estimate, as a function of the actual
values of the remote sensing measurements

.
fine-tune the inital  formulas expressing the dependence of the remote sensing data on
the soil parameters

take into account as many (or as few) remote sensing measurements as we like in
making our estimates of c and h, in each case producing error bars to quantify the
benefits of using a particular combination of measurements.



1 Introduction

,
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Several investigators ([1], [5],[7],[8], [9], [10], [1 1],[12], [14], [15]) have studied the use of remote
sensing methods to estimate the physical parameters of natural surfaces, namely the soil
moisture content and the r.m.s.  surface roughness. Because the laws of scattering from ran-
domly rough natural surfaces are quite complicated, especially at microwave frequencies,
empirical models have often been used to help express the observed remote sensing measure-
nients  as a function of the surface parameters. A typical approach, adopted in ([10]), is to
start with a ‘lraining set)) consisting of a catalogue  of carefully collected data: in the case
of [10], this catalogue  consists of L-, C- and X-band polarimetric  radar backscattering  mea-
surements for various bare soil surfaces, along wit h laser-profiler and dielectric-probe n~ea-
surements  of the corresponding r,m, s. surface height and dielectric constant values, Guided
by the physics that govern electromagnetic scattering, and using the data at hand, a model
relating the radar backscatter  to the surface parameters can be established. Of course, the
model wiIl not agree exactly with the data in every instance. Reasons for mismatches include
measurement e,rror,  the non-uniformity of the background power distribution, and the inho-
mogeneit  y of the surface within a given resolution element or from one element to the next.
Still, if the model is regarded as providing an approximate  formula that is correct on average,
one way to proceed is to disregard the data catalogue  from this point on: given a particular
radar measurement, a deterministic method can be used to invert the approximate model
and retrieve the corresponding surface parameters, The accuracy of the retrieved parameters
would naturally depend on the inversion method used, and would be difficult to quantify.

Another approach, that can potentially make fuller use of the data catalogue, is to model
not only the approximate dependence of the radar backscatter  on the surface parameters, but
also the spread  of the actual data about the approximate model. Indeed, the approximate
model can be more or less accurate over certain intervals, Using this information about its
accuracy, and how it depends on the values of the surface parameters, as evidenced” by the
carefully collected data, can only help in the inversion problem. In fact,

1)

2)

3)

. .

a Bayesian approach can indeed use this information to produce an optimal algo-
rithm, i.e. an algorithm which, among all possible algorithms, and on average, makes
the smallest error in its estimates of the surface parameters.

Moreover, such an approach can quantify the accuracy of its estimates, depending,
naturally, on the values of the measured radar backscatter in every case.

It also turns out that the approach allows one to fine-tune the initial approximate
model to better fit the data.
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4), Finally, the approach does not restrict one to a prespecified  number of input measure-
ments: indeed, it can use any combination of inputs to produce an estimate
of the surface parameters that is based on these inputs. Moreover, it can quantify the
uncertainty of these estimates. This is important because it provides a natural means
of evaluating the usefulness of using one or another combination of measurements to
estimate one or another surface parameter.

Section 2 summarizes the mathematics underlying the 13ayesian approach in the case at
hand. At the heart of this approach is the problem of modeling the spread of the data in the
“training  set” about the approximate model. This is described in section 3. Finally, section
4 discusses the results of this approach in the case of ([10]). The quantitative results are
quite encouraging, especially when the method is used to estimate the surface parameters
from the measured bascatter at all three frequencies simultaneously. The salient results of
the first three sections are suinmarized  at the beginning of section 4, for the benefit of t,he
reader who would prefer to skip directly to that section and look at the results before delving
into  the theoretical details behind them.

2 Mathematical Approach

2.1 Motivation

For definiteness, we start by considering the following specific problem: Given two measure-
ments m and n, representing respectively the ratio of HH to VV L-band radar cross-section
and the ratio of HV to VV cross sections, respectively, of a single radar resolution element,
we would like to make an ‘Loptimal”  estimate of the correct pair (E,h) that gave rise to the
particular (m)n) observed. By “optimal” , we mean that the r.m.s.  difference between the
optimal estimates and the actual values of c and h should be smallest among all the errors
made by anycandidate  estimators: the optimal method is the one which, on average, i.e.
over many (all) observations, makes the smallest error.

How does one go about finding such an optimal procedure ? A natural way to proceed
is to look for an expression of the form

m = f(t,  h)

n =  g(c>h) (1)

Once such candidate functions have been identificcl,  a direct inversion method can be used
to “solve for c and h“ in equation (1). One can then apply this inversion method to a data
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catalogue  consisting of simultaneous measurements of m, n, c and h, and use the r,rn. s.
difference between the predicted values of c and h and the measured values to measure once
and for all the success of the approach.

Yet it is unlikely that any given candidate functions j or g can make the equalities
(1) exactly true, ever, because of noise and other uncertainties inherent to radar data. In
fact, modeling the average dependence of m and n on E and h is not sufficient, in itself, to
allow one to determine which c and h best correspond to given measurements m, n: one
must still model the dependence of m and n on the many remaining factors, whose omission
from equation (1) is indeed the reason that this equation is never “exactly verified, In other

words, until one incorporates some information about the reason for which the right hand
side of (1) does not exactly match its left hand side, one would find it dif%cult to justify
a particular method of “solving for c and h“. Moreover, the r.m,s.  error produc,ed  by any
“direct inversion” approach can be due as much t~ the inexactness of the functions ~ and g
used in the model, as to the shortcomings of the inversion method used. Our starting point
in this paper is that using all the statistical information available in a reliable “training
data set” would give a more complete mathematical approach to solving the problem and
interpreting the inevitable shortcomings. Perhaps most important, a probabilistic approach
would allow one to calculate not just optimally estimated values for the soil parameters, but
also the associated uncertainty in each individual estimate.

2.2 Bayesian  approach

It is clear from this discussion that in order to find an optimal procedure, one needs to
make an effort to mathematically account for the discrepancy between the left– and right–
hand-sides of (1), We would like to replace the deterministic equation (1) by a stochastic
equation

m = I.l(c,  h).
n = L~(c,  h) (2)

where L1 and L2 are random variables whose joint  density functio7t P(L1 ,L2) is known (and
depends only on c and h). In fact, we want to represent LI as

1.1 == f(c, h) o Ml , (3)

where ~ represents the deterministic “typical)’ or “average” way in which m depends on c
and h, and in which All is a random variable that does not depend on c or h and which
represents the remaining randomness in m. Similarly, we will represent L2 as

Lz =: g(c,h) . M 2 . (4)
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Once wehavesucceecle  din establishing (2), (3) and (4), andidentifying the joint be-
haviorofthe  random variables  (~l,lkl~),  the next step isto compute thcconditional  density
f’unction ~(,,~)l(n,,n) fore, hgiventhe  measured valuesofrnandn.  F’rom Bayes’stheorem, it
follows that the unnorrnalized  version of this conditional density satisfies

qc,h)l(m,n)  =  qc,h)  “  qm,n)l(c,h)
=  P(+) ‘ qL, J,,)

11. ——— —.-=
(

—  —
‘(”h) f(e, h) g(t, h) ‘( M’ ’M ’ ) f(;h) ‘ g(;h) )

(5)

where ~(t,~) is the a priori joint’ density for (c, h), in which one includes all the a priori
information about c and h (such as estimates based on other instruments – in case one does
not know anything a priori about them except their physical range of values, ~(,,~)  would
just be the uniform density function over the product of the corresponding intervals). The
density function given by (5) must still be numerically normalized so that its integral is 1,

In any case, using the conditional density given by equation (5), the optimal unbiased
estimator ; for c that has minimum variance (i.e. that minimizes the r.m.s.  error) is the
conditional mean

~ =  ~{~l(m, n)} == / c~(c,MI(m,n)(c)  h)~~~~  . (6)

Similarly, the optimal unbiased estimator jt for h is the conditional mean Z{hl(m, n)}, For-
mula (6) is quite easy to discretize  (in c and h) and evaluate numerically. Thus, if we can
replace the deterministic equation (1) by stochastic ,cquations (2,3,4) in such a way that we
also know the joint density function ‘P(M1 ,M, ) of (ill] ,iM2)1  we have a straightforward method
of obtaining the optimal estimate, and of calculating all its moments (indeed, we have its
whole density function !).

2.3 Joint density function

So how do we go about modeling 1.1 and L2, or, equivalently, All and MZ jointly, and how can
wc determine the corresponding joint density function ? One obvious source of noise in (1) is
measurement error. Another is the fact that j and g can only represent the mean values of
the radar cross section ratios. The fact that the actual background power distribution is not
a delta-function is another reason for ( 1 ) to be inexact. In fact, these three sources of error
have been extensively studied. In particular, the results of [6] imply that if m represented the
1111 cross section by itself, and if ~ represented the true mean of the background distribution

5



of nt, then the density function PM of the random variable M = rn/j(c,  h) is

q~/4)(~+P)/2

PM(Z)  = —
r@qr(~l)

,#+iI-1)/2  ]{.-h?(2&) (7)

where K denotes the modified Bessel function of the second kind. In (7), we have also
assumed that N radar looks were used to produce m, that the fading has Rayleigh charac-
teristics, and that the background power level is I’-distributed with relative variance 1 /jL,

If we were to use this result in our case, where m and n are ratios of backscattering cross-
sections, we would need to assume that each of &ll and M2 in equations (3,4) is the ratio
of two random variables distributed according to (7). There are several reasons not to do
this directly. First, the assumption that the background power level is I’-distributed is not
always necessarily valid ([1 3]). Other distributions would produce different expressions for

PM. Second, the presence of a Bessel function in expression (7) makes it unnecessarily dif%-
cult to use in practice. In fact, in the two extremes where p is very large (corresponding to
the case where the variance of the background level is very small) or N is very large (corre-
sponding to the case where a large number of looks are used to average out uncertainties in
the backscattered  power), (7) reduces to a l’-distribution. Finally, the candidate functions

j and g may well turn out to be poor approximations of the true means. Indeed, even if
one used a very accurate method to estimate the sample mean, one remains vulnerable to
measurement error, and to contamination of the measurements by unknown scatterers on
the surface (‘(debris”, etc).

Taking all these considerations into account, it is neither unreasonable nor arbitrarily
restrictive to assume that the measurements nl and n are related to c and h by equations
(2,3,4), in which

● in the case where the measured variable is the received power (at the HH–, HV– or
VV-polarization), each M~ is itself I’-distributed, these distributions being mutually
independent.

● in our case, where the measured variables are ratios  of received powers, each Mi is
distributed like the ratio of the two corresponding (independent) I_’ distributions.

To determine the joint density function ‘P(~, ,~,, for (Ml ,M2),  we will use a reliable set of
simultaneous measurements of m, n, c and h, and test if this data is consistent with our
assumptions about M, The model for the M i’s is still not completely specified: indeed, the
parameters of the I’-distributions involved must still be chosen. As we shall see in the next
section, there is an optimal way to determine these parameters from the data catalogue.
Moreover, it will turn out that the a priori assumptions that we make about the
exact form of the distribution of the Mi’s are ultimately not crucial: any final
expression that we settle on for the density function of the M i’s can and will be tested for
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goodness-of-fit with the measurements ([2]). The problem of determining the parameters
in the I’-distributions and testing the consistency of the resulting density function ?(~l ,~z)
with the data is addressed in detail in the next section,

3 Joint density for the Michigan model

Let us apply the procedure described above to the case where the model and data to be used
are the University of Michigan Radiation Laboratory Model [1 O], and the corresponding
set of radar cross-sections measured by the I,CX polarimetric  scatterometer  POLARSCAT
([10]). Specifically, we assume that rn = the ratio of HII to VV L-band radar cross-sections,
n = the ratio of HV to VV cross-sections, and

f(c, h) = (,_ y’)l,,r’’e-kh)’
g(c, h) = 0.23 fi(l – e-~~) (8)

where O is the incidence angle of the radar beam, k is the wave number, and 1’0 = I’O(c) =

1+11-(’.
1+ c IS the Fresnel reflectivity of the surface at normal incidence, We further assume that

the functions j, g model m, n in the sense that

N1
—= Ml=E
f(;h)

n Nz
—= M2=X
g(c, h)

where N1, N2 and N, are independent, I’-distributed random variables, Practically, this
means that . .

where the parameters a, ~, ~, ~, v are to be determined,

(9)

We can determine these parameters and assess how appropriate this model is for the
error, all at once, using the Michigan data [1 O]. Indeed, given this catalogue  of reliable data
consisting of quadruples (m, n, t, h), in order to test for goodness-of-fit, we compute all the
ratios m/~(c, h), n/g(c, h) and apply the X2 test to verify that the ratio values are consistent
with the assumption that the joint distribution of ( Ml ,M2) is as in equation (9). But our
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proposed distribution depends on five parameters. In this case, the Xz test is still valid
as long as we replace the parameters by their maximum-likelihood values computed from
the data, and decrease the number of degrees of freedom for our Xz test by the number of
parameters, i.e. by five ([2]).

Yet, a priori, it seems that we are using too many parameters. Indeed, the density
function in (9) does not change very quickly as the parameters vary. We tried to reduce the
number of parameters by trying to estimate them first from the marginal density functions
corresponding to &fl and M2 separately. Using the University of Michigan set of scatterom-
eter data for m only, the maximum-likelihood values for a, ~ and ~ were a = 7.08, ~ = 7.12
and ~ = 1.06, with a fairly flat likelihood function, especially along the “ridge” a = ~, ( = 1.
Similarly, the ML values for /?, -y and v, based on the data for n only, were@= 4.275, ~ = 4.26
and v = 0,85, again with a fairly flat likelihood function along the “ridge” /? = ~, v = 1.
We are thus justified in making the simplifying hypothesis that (M l, MQ) obeys (9) with
a = /? = 7, and set out to determine the maximum-likelihood values for ~, ~ and v based on
the joint measurements for A41 and &fz. The likelihood function to be maximized is

+ log I’(3~) – 3 log ~(~) (lo)

where J is the number of measurements at hand, The values at which the maximum is
achieved are

7(=a=p)  ~ 5 ,
( == 1.04, (11)

v = 0 .82 .

We now test our answer for goodness-of-fit. The joint distribution function can be
obtained by integrating (9) directly. One finds that

1
pr{Ml<A and Alz<B}=l– — ——

(l+a)’ (l~b)’+(l+~+b)’

–5 a b a+b a ’ b2

+15 (a+b)2
(l+a)’–  5(] +b)’+5(l+a+  b)’ 15~] +a)7 ‘15(l+b)7

—— _
(l+u+b)’

–35
a3 b3 (a+ b)’ a’ b’ (a+ b)’

(l+a)’  ‘35(l+b)8  ‘35(l+a+  b)’ ‘70(l+a)9  ‘70(]  +b)g+70(]+a+b)g
b’a + 2b3a2 + 2b2a3 + ba’ 3b4a2  + 4b3a3 + 3b2a4

+630
(1 + a + b)’”

+ 1050
(1 i- a + b)]’
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b4a3 + b3a4 b4a4

‘11550(1 +a+ b)]’ + 34650(1+ a + b)’s
(12)

where a = A/~, and b = 13/v, We segment our data into eight disjoint events, and, using
equation (12), compute the predicted frequencies for each event. The ratios of predicted-
to-observed counts is summarized in table 1. ‘1’hc X2 statistic for these counts is 9.9. For

Ml \ M2 M 2 < 0 . 5 o.5<M2<l.  i 1.1< MZ<I.7 1.7<M2

Ml <1.1 7 / 9.77 18 / 14,88 ‘ 7 / 4.03 3 / 1,27
1.1 <Ml 5 / 2.76 6 / 10.35 4 / 6.77 6 / 6,17

Table 1: Ratios of predicted-to-observed counts for (Ml , Mz)

a X2-variable with 5 degrees of freedom, the cut-off value for the critical region of size 0.05
is 11.1. Thus our value is well within the acceptable region, and we conclude that it is
reasonable to assume that (9), with the parameters as in (11), is indeed the joint density
function for (M l, M2) in the case of the h4ichigan  model,

4 Results

13efore describing our results, let us summarize the approach described in the previous sec-
tions. Write m for the ratio of HH to VV L-band radar cross-sections, n for the ratio of HV
to VV cross-sections. We start with the model (refer to equations 2,3,4, 8, and to [10])

m = f(c, h) Ml =: []_ [$13r0e-j2M1

. . n = g(c, h) M2 = 0.23 fi(l – e-~~) M2 (13)

where O is the incidence angle, k is the wave number, I’. = 1(1 – ~)/(1 + @)12,  and where
the pair (M l, Mz) of random variables has joint  density function (refer to equations 9,11)

~(M,,M2)(~) v) =
(x/1 .04)4 (y/0,82)4.—

(0.82) ~ (1.04) (z/1.04 + y/.O82  + 1)15 (;;;3
,— (14)

Given specific values for (m, n), our optimal estimates t and ~ are then obtained using the
‘formulas (see equations 5)

9
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A=
/1

1 1
h7qE, /2) —-— (——)f(t, h) g(c, h) ‘(M]’M’) f(;h) ‘ g(;h) ‘Calf’ ‘ (16)

and t hc corresponding error bars are given by

The a priori density function T(c, h) will typically be assumed uniform over a rectangle in the
(c, h)-plane.  The integrals can be computed numerically. We are finally ready ‘to describe
the results of this approach.

4.1 Optimal estimates:

Figure 1 (resp, 2) is a contour plot of the optima.] estimate (h (resp. f) of kh (resp. c), as a
function of the cross section ratios m and n at O = 40°. The values of kh and t were obtained
using our Bayesian  approach, and starting with an a priori density function ~(c, h) that is
uniform over the rectangle 2 < c < 20, 0 ~ kh < 1. Overlaid on the contour plot of figure
1 (resp. 2) are those samples of the Michigan data that were collected at 40° incidence, each
accompanied by the value of kh (resp. E) computed according to the inversion algorithm
proposed in [1 O], as well as the measured values, At 40°, the value of kh calculated by the
direct inversion algorithm falls within 25% of the measured value in four out of the eight
samples, but it misses by 1007o in three cases. Our approach is not visibly more accurate.
Similarly, the estimates of e do not appear to be very accurate,

4.2 Error bars:

One way to measure the accuracy of the model functions f and g quantitatively is to look
at the variance of the conditional density function, Indeed, these variances quantify the
uncertainties in the estimates obtained by using the optimal approach. Figures 3 and 4 show
the r.m.s.  uncertainty in the estimates of kh and c respectively. In this case, the model
consisting of the function ~ and g of equation (8) can be considered “useful” if the r.m,s.
uncertainty of the estimates that we obtain with it is smaller than the a priori uncertainty
made by assuming that c and kh are uniformly distributed, i.e. if the r,m.s,  uncertainty in.
? is smaller than (2o — 2)/@ ~ 5,2, and if the r.m, s. uncertainty in kh is smaller than
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(1 – 0)/fi N 0,29,  Figures 3 and 4 show that  this is indeed achieved everywhere. While
it is encouraging to verify that using the model is an improvement over chosing values for E
and kh at random, it should be noted that the relative uncertainty in the estimates is quite
large, Indeed, figure 3 shows that if the absolute value of the HH-to-VV ratio n is less than
21 d13, the 1. a uncertainty in the estimate of kh exceeds 0.2, But according to figure 1,
when 72 is around -20 dB, the optimal estimate of kh is itself around 0.3. Its 1. a uncertainty
is therefore close to 100VO ! Overall, one can see from figures 1 and 3 that the smallest that
the relative uncertainty in the estimate of kh gets is about 30%, when In! is less than 13 dB.
On the other hand, figures 2 and 4 imply that the. r.m.s.  relative uncertainty in the case of c
is never worse than 50Y0, Although still somewhat high, this value seems encouraging. Yet,
in the case of c, one is typically interested in differentiating between ‘iwet” and Cfdry”  soil.
Figure 5 colnpares  the estimates for c based on the actual measurements in the Michigan
data, showing side-by-side four pairs of samples. Each pair represents two measurements at
the same site, one when the soil was “wet” , followed by another when it was “dry”. Note
that the estimates for the first pair would erroneously indicate drier conditions on the first
day. The “spread” for the remaining cases between the optimal estimates on the dry and
wet cases is not very significant in comparison with the size of the r.m.s.  uncertainty. In fact,
the wet–dry difference is typically less than 1/4 of the r,m,s.  uncertainty in the estimate of
c, ‘l’his implies that the model will typically allow little discrimination between “wet” and
“dry” soil.

4,3 Fine-tuning the initial model:

The results above illustrate the direct application of our estimation approach, and its ability
to quantify the uncertainty in the estimates one obtains using a particular model. In this
case, it turned out that this uncertainty is rather large. Let us now try to use our method to
help improve the estimates. So far, we have been using the model expressed in equation (8).
One way to improve our estimates is to tune the parameters in t,hat model to the situation
at hand. Specifically, one can postulate a n~odel of the form

f (c, h) = (,_ (Xy’’.-kh)’

g(t, h) = bI’oc  (1 – c#) (19)

together with a probability density function ~(~1 ,~,) for the observed ratios (m/~, n/g) of
the form

(20)
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as before, then go on to determine a, b, c and N in order to maximize the likelihood of
observing the radar cross sections reported in the Michigan data. In section 2, we derived
the equation relating the density function ~(~1 ,I,,)(nz, n) for the observed HH-to-VV and
II V-to-VV  cross section ratios (m, n) to the density function ~(~1 ,~,).  In fact, equation (5)
states that

(21 )

~’he Michigan data include 32 observations at L-band with incidence angles between 30 and
60 degrees. Calling these observed ratios { (mj, nj ) , ~ = 1, . . . ,32}, we are
the values of a, h, c, N which maximize

thus lead to find

(B ‘P(I.l,L,)(~nj,nj)  = ii f(,~,~j)~~jJ  ‘(M’M’) f(c~jllj)’ !7(~~Vhj)
j=l j=l ‘ )

32
(n2j/.f(6j,  ‘j)) ‘-1 (~j/g(~jj hj))N-’ I’(3N)

= j!! .f(’t~ ‘j)d~ F/f(’j, ‘j) + nj/9(~j, ‘j) + 1)3N r(N)3

1 r(3N)

(

(mj/.f(cj,  ‘j)) “  (T1j/9(6j, ~j)) N

=  i i — —  —

)
(22)

j=l ‘j ‘j ‘(N)3 (mj/f(cjt ‘j) + ‘j/9(6j> ‘j) + 1)3

=  (54 “m” (E(~j/f(~jj~j)+,j/g(j~j)+-l)’)’v

(mj/.f(Ej, ‘i)) “ (nj/9(’j, ‘j))

It is apparent from this last equation that the probIem  of finding the optimal values of a, b, c
decouples from the problem of finding the most suitable N. Indeed, to maximize (22), we
must find the values of a, b, c which maximize

(mj/f(ej, ‘j)) “ (nj/9(ej, ‘j))B ((mj/.f(6j,hj)  + nj/9(~j,~~j)  + 1)3j=l )
and that value of N which then maximizes

()1’(3N)  3 2  ~fN
l’(N)’ “

(23)

(24)

where K is the value of expression (23) when a, b, c take on their optimal values. This
decoupling is in fact expected: the problem of finding the “right” values of the parameters
a, b, c should consist in matching the postulated form for ~ and g to the sample mean of the
data at hand, while the problem of finding the “right” value of N involves quantifying how
closely the “best” model then fits the data,
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At L-band, we found that the optimal values for a, b and c were

a = 0.33675

b = 0 . 1 2 3 4 4 (25)

c= o ,

and N = 15. We can now apply our Bayesian estimation approach using the previo~s
model with these new values. Figure 6 shows a contour plot of the optimal estimate k h
using our modified model with incidence angle O = 40°, as a function of m and n, overlaid,
as before, with those samples of the Michigan data that were collected at 40° incidence, each
accompanied by the value of kh computed according to the inversion algorithm proposed in
[10], as well as the measured values. This time, tile measured values of kh never fall farther
than 20% away from the corresponding contour line, a very encouraging sign. Figure 7 shows
the 1, a uncertainty of the optimal estimates. Comparing figures 6 and 7, one sees that the
worst-case relative r,m.s.  uncertainty is now around 50Y0, a significant improvement over the
original model, ‘l’he results for ~ are less encouraging. Figure 8 compares the estimates for c
with the values obtained by direct deterministic inversion and with the actual measurements
in the Michigan data, showing, as before, the four wet-dry pairs of samples at 40° incidence.
The estimates for the first pair still erroneously indicate drier conditions on the first day. The
accuracy, along with the spread between the optimal estimates on the dry and wet cases for
the other samples, have improved. Figures 9 and 10 show the case where the incidence angle
is 30° and 50° respectively. The results at the steeper incidence angle are visibly better,
as was predicted in [3]. Yet the variance of the estimate is still large compared with the
difference between the wet and dry cases,

4.4 Incorporating additional measurements:

The last application of our method will consist ill trying to reduce the uncertainty in our
estimates, this time by trying to fuse data collected from different instruments. Indeed, in the
case at hand, the data come from nine independent channels: HH, HV and VV polarizations
at L-, C- and X-bands. To keep the notation simple, we shall index our variables with
1, 2 or 3 according to whether they relate to band 1., C or X. To make use of the three
polarizations from the three bands simultaneously, we must first replace kh and c by two
frequency-independent parameters, say h itself ancl the moisture content p. We then need
to determine model functions fj, gj, j = 1,2,3 that give a suitable approximation for the
ratios (mj, nj), and we must determine how each pair (jj, gj) fits the data in its respective
band. This is accomplished as before using a maximum likelihood process. The results
in the case at hand are a2 = 0.252, b2 = 0,1399, C2 = O and N2 = 20 for C-band, and
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a3 = 0.198, h3 =0.13, c3=0.035and  lV3=29for X-band. Given 6measurements  of the HH-
to-VV and HV-to-VV  ratios in these three bands, the expression for the conditional density
function 7 for (p, h), conditioned on these observations, can be derived from equations (5):

((P(/!i,h)  == fi 7’j — - ) 1

&Z~)’ 9A: }’J ~j(l’, h)9j(P) h’) )
‘ P&L,  h) ( 2 6 )

j=l

where 70 is the a priori density function for (p, h), which we took to be uniform over the rect-
angle O < p < 0.4, 0 < h < 3.2 Cm, and where Tj(z, y) = (r(3Nj)/1’(Nj)3 )(xy)~~-l/(~ +
y + 1 )~~. The conditional means of ~ WOUIC1 then be the optimal estimates for ~~ and h given

actual h actual p fi300 CT(~L300) j j1400  I 0(~L400  ) j’1500 CT(}1500 ) j&oO @600 )

0,4 cm 0.29 0.17 0.063 0.25 0,064 0.24 0.060 0.28 0.061
0.4 cm 0.14 0.12 0.057 0.18 0.058 0.21 0.069 0.23 0.072

1 ,

0.32 cm 0,30 0.23 0.062 0,32 0.053 0.34 0.047 0.30 0.059
0.32 cm 0.09 0.08 0.049 0.13 0.057 0.13 0.063 0.22 0,084

Imrn 0.31 0.21 0.104 0.30 0.074 0.31 0.067 0.33 0.056
1 1

1,12 cm 0.15 0.15 0.090 0.23 0.092 0.17 0.103 0.21 0,101
3,02 cm 0!19 0.16 0,109 0.23 0.107 0.24 0.102 0.28 0.088
3.02 cm 0.16 0.16 0.106 0,17 0.109 0.21 0.107 0.25 0.095

Table 2: Soil moisture estimates using HH/VV and HV/VV ratios at L, C and X bands

the six measurements at hand, Table 2 summarizes the results for p. In order to use the
model functions f and g, we needed to convert p to a corresponding value of c. To do this,
we used the semi-empirical formula

~ t= Re((l,686+/116~.9+i+ ~~}1864)00’5)153’) (27)

similar to the one used in ([4]), and in which ~ is the frequency in GHz, and i = fi. The
resulting estimates are quite good. The estimated r.m, s. uncertainty almost never reaches
5070 of the estimated moisture content anymore. In fact, except in the roughest case, the
wet—dry spread is typically as large as the uncertainty in the estimate, whereas in the L-
band-only case it was very much smaller. This is very important because it implies that
the combination of L-, C- and X-bands does allow one to estimate the soil moisture content
accurately enough to discriminate between wet and dry conditions, Table 3 shows the results
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actual h h~o. a(h300) halo. -j h~o. a(h~o. ) h~o. u(h~o. )

0.40 0.29 0.065 0.36 0.081 0.36 0.079 0.38 0.076
0.40 0,29 0.063 0.38 0.091 0.60 0.160 0.66 0.165

0.32 0.22 0.044 0,3F 0.077 0.35 0.069 0,43 0,089
0.32 0.29 0.061 0,47 0.121 0.73 0.226 1.21 0.408

1.12 1.39 0.494 1.09 0,365 1.17 0,354 1.02 0.246
1.12 0.79 0.261 1.13 0.434 2,26 0,582 2.33 0.557

3.02 2.59 0.467 2.68 0.416 2.70 0.407 2.70 0.391
3.02 1,97 0.615 2.38 0.550 2,44 0.526 2.55 0.466—

Table 3: Soil r.m.s.  height  estimates (in cm) using lIH/VV and HV/VV ratios at I,, C and
X bands

for the r.m.s.  height h. The best results arc the ones at 40° incidence, although the remaining
estimates are quite good too.

This example does demonstrate the ability to produce sharper estimates by combining
data from different channels using our approach, We intend  to test this procedure more
extensively on SIR-C / X-SAR data. For now, our purpose in describing this example is
merely to illustrate a feature unique to our 13ayesian approach: indeed, a deterministic
inversion approach would be hard pressed to compute the values of two variables, given a
greater number of equations (six in our case), let alone estimate the error in the result at
the same time.

5 Conclusions
. .

The method presented above allows one to use any model for the dependence of radar cross-
section measurements on soil parameters in order to obtain  improved (‘(optimal”) estimates
of these parameters, along with the variance in the estimates based on the model. The
method achieves this by calculating the entire joint conditional density function for the
problem. When one has a model with a priori unknown parameters, the method can still
be applied in combination with a maximum-likelihood approach to estimate the unknown
parameters.

While there may be more direct (exact or approximate)

15

ways to compute the conditional



mean, calculating the conditional density itself is quite interesting and useful; Indeed, as
was demonstrated in the case of the combination of L- C- and X- band measurements, this
approach can be used to quantify the improvement afforded by incorporating a particular
measurement, by comparing the conditional (minimal) variance of the density function that
is conditioned on this particular measurement with the unconditional one to get a first-order
measure of the utility of using the measuremelit  in question. Perhaps equally important,
the last application demonstrated how one can use the conditioned density as a new a priori
density function and incorporate observations from additional instruments by applying this
algorithm repeatedly, each time updating the density function from the previous step in
the data fusion. We intend to test this approach more extensively on the data that will be
gathered by the SIR-C / X-SAR  Space Shuttle experiment.

We are currently evaluating different models for the dependence of active radar measure-
ments (at various frequencies and polarizations) on the soil parameters. More specifically,

we use our method to compare the variance of the optimal estimates obtained using the var-
ious models under consideration. In addition, the results in the bare-soil case presented this
paper encourage us to believe that the method can be extended to account for more complex
sources of randomness in the measurements, such as the presence of vegetation. Finally, we
intend to apply our approach to optimally fuse passive radiometric measurements together
with the active radar data to obtain estimates of the soil parameters that, it is hoped, will
have a correspondingly smaller variance.
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